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NODAL GEOMETRY ON RIEMANNIAN MANIFOLDS

SAGUN CHANILLO & B. MUCKENHOUPT

1. Let M" be a smooth, compact, and connected Riemannian mani-
fold with no boundary. Let A denote the Laplacian on M . Let —Au =
Au, u an eigenfunction with eigenvalue A, 4 > 1. Our main theorems
are:

Theorem 1 (BMO estimate for log|u|). For u, A as above,

Il log | || gpo < cA” logi,

where ¢ is independent of A, and depends only on n and M.

Theorem 2 (Geometry of nodal domains). Let u, A be as above, let
B C M be any ball, and let QQ C B be any of the connected components of
{x € B:u(x) # 0}. If Q intersects the middle half of B, then

9] > e 2 (10g 1) 7"

1Bl
where ¢ is independent of A and u.

Similar theorems have been proved by H. Donnelly and C.
Fefferman [1], [2] with A"logA replaced by A""*?/* in Theorem 1 and

a2 2(log4)™*" replaced by A= )2 4 Theorem 2. Of course,
it is obvious that Theorems 1 and 2 above are not best possible.

Theorem 1 is the key to Theorem 2. We deduce Theorem 2 from Theo-
rem 1 by essentially following the arguments in [2] with appropriate mod-
ifications in view of the better BMO estimate of Theorem 1.

We shall use the symbols ¢, ¢, ¢, ¢, ¢, ¢, and C to denote
generic constants which are independent of 4.

2. Before commencing the proof of Theorem 1, we recall two facts
from [2]. We state these as Theorem O.

Theorem 0. Let M, u, A be as above. Let B(x,d) denote the ball
centered at x of radius . Then
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2 2

(A) / wi<e [
B(x,8(1+4~ 12y B(x,6)

1/2 1/2
2 NN 2
(B) (/B(x,a) IVl ) <Xt (/B(x,5> lul ) .

We now begin the proof of Theorem 1.
Lemma 1. Let u, A be as before. Then u satisfies the reverse-Holder
inequality,

([BI / " |2n/n 2)) n—2)/2n < i (IBI / I ,2>1/2 ‘

Proof. By the Poincaré-Sobolev inequality, for any ball B,

((B|/ u-— {B|/ 2n/(n— 2) (n— 2)/2nSC|Bll/n (T_;_‘/Blvulz)l/z‘

We now apply Theorem O(B) to the right side above, to get

(IBI/ " IBI/ 2n/(n— 2)(n—2)/2n<c\/_<lB|/!u‘2>1/2'

By use of Minkowski’s inequality, Lemma 1 follows. q.e.d.
Our theorem will follow from the lemma stated below.
Lemma 2. Suppose w >0,

(2.1) / w < Co/ w,
B(x,0(1+1/V2) B(x,0)
and
1 n/(n_z))(n—Z)/n 1 /
2.2 (——/ w <cA— | w.
23 151 /s 18 J,

Then |{logw||gpo < c(n)A" logd.

Theorem 1 follows by choosing w = lulz.

Our next lemma is a covering lemma of independent interest.

Lemma 3. Fix any § > 0, with 6 < 1/2. Let {B,} ., be any fi-
nite collection of balls in R". Then one can find a subcollection of balls
B,,B,, -, By such that

N
(a) \UB.c U1+6

a€l

N
(b) > xp () <467

i=1
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Proof. Select a ball B, with the largest radius from the collection
{B,},c;- Having selected B,---,B,_, select B, so that B, ¢
Uf.:ll(l-i-é )B; and B, has the largest possible radius out of the balls in the
collection {B,}, . 1\{Bi}f=_11 . Our choice of the subcollection B, --- , By
clearly satisfies (a). We now prove (b). Let x, € ﬂ‘?i B, M =M(x,). By
a translation we may suppose x, = 0. For x € R", define T,(x) = x/r,
r > 0. By our selection procedure Trk(Bk) ¢ Ui.:ll(l + §)Trk (B,), where
r; denotes the radius of B;,. Now Trk(Bi) is also a ball containing the
origin, and since r, > r, for i < k, we have Tr,.(Bi) C Trk (B;), and we
conclude

k—1
(+) T, (B,) ¢ [J(1+8)T, (B,
i=1

Let z; denote the center of T, (B ). We note that each of the balls 7, (B,)
has radius 1 and 0 € ﬂl T, (B ). We will show that |z, —z;[ > 6. For
if |z, -2,/ <9, andassum1ngr> ,weget (1+6)T ( )DT(B)
violation of (x). Thus the balls B(z 5/2) are all d1s101nt Furthermore
T, (B)C{x:|x| <2} forall i=1,2,---, M. Hence, M(6/2)" < 2",
i.e., M <4"67", and (b) follows.

Lemma 4. Let w satisfy the hypothesis of Lemma 2, let B be a fixed
ball, and let E C B such that |E| > (1 —c,A ) |B|. Then

[wz i [w,
E B

where ¢, = ¢,(n, ¢;) and ¢; = c5(n, ¢;).

Proof. The proof of Lemma 4 rests on an induction on k, the inductive
step being accomplished by Lemma 3. We verify Lemma 4 for k = 1.
To do so note that if |E| > (1 —cA™" ?)|B| (for some appropriate choice
of ¢ = ¢(c,,n)), then fpw > % fpw. To see this, observe [B\E| <
¢A”"*|B|. Thus by (2.2),

njn-2y\ 2" Un _ _2n
w < w |IB\E|"" <c""¢, | w.
B\E B B

We make the choice ¢/ "¢, < 1/2 and inserting this choice into the
inequality above we get [p  w < Lfzw. Thus ffw > 1fpw. If
¢, < ¢ and |E| > (1 —c,A"™)|B|, then |E| > (1 —ci ™?)|B|. There-
fore ffw> 3 fw> c3/1_"/2 [z w, and we are done with the case k = 1.
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So we assume the statements are valid for & — 1. Clearly we can assume
[E| < (1- e 2)IB] or else there is nothing to prove. For each point of
density x of E we can thus select a ball B, C B such that x € B, and

|B,NE|/|B|=1-ci"",
We apply the covering lemma, Lemma 3, to the B, ’s with the choice
5 = 272 and also assume without loss of generality that the B, are

finitely many. Define E, = (U?;l(l + A_I/Z)Bl.) NB. Then E, C B, and
to complete the induction we will show that

(2.3) |E| < (1 - A" ME,],

(2.4) / w > e / w.
E E,
We prove (2.3) first. Now,

E,| = |E| + ](U(l + 1_1/2)Bi) nB\E‘
> |E| + ‘(UBZ.) NB\E| = |E|+ .UB,.\E} .

By the covering lemma, Lemma 3, the expression above is bounded below
by

(2.5) E|+47"27"*3 " |B\E|.

By our selection, |B,\E| =¢A~"/%|B,|, thus (2.5) is bounded below by
E|+ > ca™A7"|B) = |E|+ ¢4 "(1+a) T Y [0+ 473)By).

Set c4™"(1+4""*)™" =¢,, and note ¢, < ¢. From the expression above

we deduce
|E\| > ¢,A”"|E|| +|EI,

and (2.3) follows.
We now prove (2.4). By (2.1),

w < / w < ¢ / w.
/E1 Z (1+A7"%B, OZ B,

But (1 — él_"/z)]Bi| = |E N B,|, thus fB,. w < ZfBime. Therefore, by

Lemma 3,
w 52c0/waB‘ 52-4"c01"/2/w.
E i E

c w < 2¢ /
L, s,
We select ¢; ' = 2-4"c, and (2.4) follows. g.e.d.
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We now prove Lemma 2. It will be enough to assume |B|_1 [pw=1,
and to show for ¢ >0

-1 lBl
. <
HxeB:w (x)>1t} < tc,l_"(logl)"' ,

which is equivalent to showing

A‘"(log}.)—ll

{x e B:w(x) <t} < B|.

Let us denote by E the set {x € B : w(x) < t}. Select k, such that
|E| ~ (1= ¢,A"")%|B|. Thus k, ~ cA"log(|B|/|E|), and so by Lemma 4
and the normalization |B|_1 [pw =1, we get,

IB] =/w < (c32"/2)k°/'w < (e E|.
B E

Hence,
nj2 n
|BI/|E| < te™0™* < 1(1B|/|EN ",
—n -1
and it follows easily that |E| < (%% |B|. qe.d.

We now prove Theorem 2. We will be brief and only indicate those
points in our argument which differ substantially from the argument pre-
sented in [2]. Before commencing we note an equivalent formulation of
Theorem 1:

Theorem 1'. Let u, A be as before and let E C B. Then

cAlog

sup |u| < (c|B|/|E]) sup |u|.
B E

The lemma stated below is proved in [2] (Lemma 2 there).

Lemma 5. Suppose Q is a component of {x € B(x,, d), u(x) > 0}
and assume x, € Q and 0<J < A~V Suppose further [Q/|B(x,, d)| <
n" < ing < 1. Then there is a positive number r, satisfying

(a) O<ry< L5,
Mo

|QﬂB(x0, ro)l n
b B 20 ol s
(b) By, )] >0

rO cy/n
(c) sup [ul < (2)7 sup Jul,
QNB(x,,7,) B(x,,8)

where c, depends on the “bounded geometry” estimates.
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We also need the estimate below which is Theorem 1 in [1].
Lemma 6. Let u, A be as above. Then

r Vi 1
sup |u| £ (c—,) sup |ul, O<r<r.
B(x,r) r B(x,r")

Lemma 6 may be deduced from Theorem O(A) above by an iteration
and a use of the mean value inequalities for u.

Proof of Theorem 2. By Theorem 1',

4" log A
sup Iul < (M)C * sup 'ul
B(xy,1,) - |QnB(xoa ro)l B(xy: rg)NQ
< (c —n\cA"log i sup ul
( ;70 ) B(xo,ru)ﬁQ' I

The estimate above follows by assuming [Q|/|B(x,; J)| < n" and then
using Lemma 5(b). We shall arrive at a contradiction for a suitable choice
of 7, and thus for this choice of # we will have [Q|/|B(x,, )| > n"
which will prove Theorem 2. Using Lemma 5(c) we get
e ry\9/7
sup [u] < (eny ™)™ (—0)

—nyci" logd
(eng")°
) B(y,7)"Q )

o sup |u|.

B(x,,6)
Thus,

sup |u|.

—nyeA"logd T\ /™
sup [u] < (eny )" (_0) B(x,.,9)
Xy,

B(xU 1) )
Applying Lemma 6 to the left side above yields

6 C\/I _ n 7 e /,1
sup |u| < (C—) (Cﬂo n)cl log 4 (30) 4 sup |u|
B(x,,0) Iy B(x,,9)

7o C/n—eVa JPRRY:
< (C—O) cn n)c log A

5 o sup |u|.

(x9,9)
Therefore (cry/8)%/ ™ (cny ™ 108 > 1,

Let us assume that our choice of 7 is such that ¢,/n — cvi>0. So
using Lemma 5(a) we see easily

\ ey/m—cVa "

1< (Ci) 4 (Cno—n)cl logl.
Mo

We now choose 7 = 77(2, and 7, = ¢A™"(logA)~'. This choice forces

¢,/n—cvA >0 and also yields

1< (Cno)q/n—cﬁ—cnl" logl‘
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This is a contradiction as ¢y < 1 for small ¢. Thus, |Q|/|B(x,, )| >
7" = cA"*(logA)”*" . We now get rid of the restriction & < A~/?. Sup-
pose B C M is any ball with radius r > A2 Assume X, € Q be-
longs also to the middle half of B. We apply our previous conclusion to
QN B(x,, /1_1/2) to get

2
QN B| > QN B(xy, 23 > A" (log ) 2" [B(xy, 4~
c,l_z":_"/z(log A)—Zn

= P |B|

But r < ¢, as the manifold is compact and we hence arrive at

QN B| 2 2™ " (log 1)™|B|.
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